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This paper argues that when used judiciously Bayes’s law has a role to play
in the evaluation of scientific hypotheses. Several examples are presented in
which a rational response to evidence requires a judgement whether to apply
Bayes’s law or whether, for example, to redistribute prior probabilities. The
paper concludes that reflection on Bayes’s law illustrates how an adequate ac-
count of the rational evaluation of hypotheses requires an account of judge-
ment—a point which several philosophers have noted despite few attempts to
develop an adequate theory of judgement.

1. Preliminaries. A traditional and still vigorous program in the phi-
losophy of science seeks to capture the rational evaluation of scientific
hypotheses in a formalism that will allow us to assess the impact of evi-
dence on hypotheses. Bayesian confirmation theory is one avenue through
which this program is currently being pursued. While many forms of
Bayesianism have been developed (Good 1983), a common thread ap-
pears in the case of confirmation theory: the central role played by Bayes’s
law in evaluating the probability of hypotheses. Bayes’s law is a theorem
of the probability calculus, which can be written as follows:

P(hle) = P(h)P(e|h)/P(e), provided P(e) # 0. N

In this equation the hypothesis £ is being evaluated on the basis of the
evidence statement e. To use this formalism we begin with an estimate
of the probability that our hypothesis is true independently of our knowl-
edge of e. This probability, P(h), is the “prior probability of 4”; P(e|h),
the “likelihood”, is the probability that e is true conditional on h; P(e) is
an estimate of the probability that e is true. Now P(kle) is our new es-
timate of the probability that 4 is true once e has been taken into account.
Thus Bayes’s law provides an algorithm for adjusting the probability of
h as evidence accumulates. Each of the probabilities in this equation is
to be evaluated in the light of accepted background knowledge. Including
the background knowledge in (1) yields P(hle & k) = P(h/k)P(elh & k)/
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352 HAROLD I. BROWN

P(e/k). I will omit k in order to simplify the formula. This will not affect
any of the points made in this paper.

As is the case for any algorithm, application of (1) requires that the
input values be determined before the algorithm is applied. This suggests
that our value for P(h{e) will be no more reliable than the least reliable
of our inputs. Thus an examination of the epistemic status of these inputs
is a crucial issue in evaluating the Bayesian program. Indeed, the status
of the inputs provides one major source of disagreement among Bayesians
and I can specify the version of Bayesian confirmation theory that I will
be concerned with in this paper by considering the status of these inputs.
As a first step note that Salmon has recently characterized one approach
as “the standard Bayesian approach in which all of the probabilities are
taken to be personal probabilities” (1990, 181). However, recent litera-
ture presents a widely defended form of Bayesianism that differs from
Salmon’s characterization in one respect: A substantial number of prom-
inent Bayesians deny that the likelihoods are personal probabilities. To
see why, let us distinguish two cases: that in which 4 is a deterministic
hypothesis and that in which /% is a statistical hypothesis.

In typical examples of the former case, either % entails e and P(e}h) is
one, or h entails —e and P(e|h) is zero. Thus the value of P(e|h) is not
subjective in this case because this value is assessed on the basis of a
deduction. When # is a statistical hypothesis, & does not entail e but rather
a probability value for e. For example, if our evidence consists of two
flips of a coin yielding two heads, and £ is the hypothesis that this is a
fair coin, we can calculate that P(elh) = 0.25. Again, the value of P(e}h)
is assessed on the basis of a deductive argument. The view that the like-
lihoods are not subjective has been defended by Howson and Urbach (1989,
119-120), who consider the ability to provide a unified treatment of de-
terministic and statistical hypotheses to be one of the advantages of the
Bayesian approach. Howson has recently reiterated the point, “The only
endogenously determined quantities in the Personalistic Bayesian theory
are the likelihood terms P(e/h) . . . and the probabilities of necessary
truths and falsehoods relative to the individual’s background information”
(1990, 228). This approach is also both defended and criticized in Earman
(1992). Indeed, Earman introduces the thesis that likelihoods are also
personal probabilities as a criticism of the view he discusses (ibid., 140~
141).

Until section 5 of this paper I will use the term “Bayesian” for a view
which deviates from Salmon’s “standard approach” in one respect: The
view holds that all of the inputs to Bayes’s law except the likelihoods are
subjective. Let us look briefly at some of the issues raised by the sub-
jective status of the remaining inputs into Bayes’s law.

Much discussion of Bayesianism concerns the possibility of overcom-
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ing the subjectivity of these inputs as evidence accumulates. It will be
useful to develop our discussion of these inputs in terms of a familiar
distinction from traditional confirmation theory: that between the context
of justification and the context of discovery. The former context is limited
to the logical assessment of hypotheses against the evidence; according
to Bayesians this assessment occurs through applications of Bayes’s law.
Originally the context of discovery was limited to the processes by which
scientists arrive at hypotheses. The main point of the distinction lay in
the claim that this is an arational process; the rationality of our epistemic
attitudes toward hypotheses depended solely on the evidence and the as-
sessment carried out in the context of justification. This distinction is
central to the Bayesian view, but Bayesians extend the set of items lo-
cated in the context of discovery to include subjective estimates of the
remaining inputs into the Bayesian formula and, as we will see as we
proceed, other items as well. If a Bayesian account of the rationality of
science is to succeed, Bayesians must show that accumulating evidence
and the application of Bayes’s law are sufficient to overcome the sub-
jectivity of these inputs. Let us consider, then, the two remaining inputs
to the Bayesian algorithm.

The most controversial (and most heavily discussed) of the required
inputs is P(h): the estimate of the probability of / prior to consideration
of the evidence e. The value of P(h) is estimated by the individual eval-
uator on the basis of available beliefs and any other considerations deemed
relevant. The subjective nature of this estimate might seem to guarantee
a subjective output from the algorithm, but a standard Bayesian response
to this objection is available: We only estimate P(k) once for a given
hypothesis and that estimate becomes less significant as evidence accu-
mulates. Given each new item of evidence, we apply Bayes’s law again
using the most recently calculated value of P(hle) as the current value of
P(h). Evidence, it is argued, eventually “swamps™ the initial estimate of
P(h) so that all investigators converge on the same value for P(h) what-
ever their initial estimates. Indeed, several theorems show that conver-
gence must occur under certain conditions. The best known theorem is
due to Savage (1954, 46-50); this theorem as well as more recent con-
vergence results are discussed and their significance assessed in Earman
(1992, 141-149, et passim). In general, Bayesians tend to rest content
with the swamping thesis (e.g., Howson and Urbach 1989, 235-236)
while critics question the relevance of these theorems to real scientific
inference. Without adding to this literature, I will simply note a per-
spective on the swamping thesis that will be important as we proceed.

Those who rely on the swamping thesis share a central strategic move
with Popper. On Popper’s view, scientific hypotheses are proposed non-
rationally and then evaluated by deducing testable consequences from them.
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False hypotheses are eliminated when we deduce a conclusion that we
can show to be false. Thus we need not worry about the nonrational source
of our hypotheses since false hypotheses will be overwhelmed by the
evidence. Now Popper sought to do away with induction and capture the
logic of scientific justification wholly in deduction. Bayesians typically
view themselves as providing an inductive logic, but deduction is the only
logic required for a Bayesian “induction”. Deductive inferences occur
when we apply Bayes’s law and when we determine the value of P(ejh)
by deducing either e or the probability of e from 4. The remaining inputs
to an application of the Bayesian algorithm are accepted nonrationally
according to Bayesians’ own standards. (I develop this point for P(e)
shortly.) In other words, on both the Popperian and Bayesian views de-
duction is the only logic required in the context of justification. Thus the
key epistemological question becomes the status of the premises of these
deductions; after all, any conclusion can be validly deduced from some
premises. Both approaches attempt to solve this problem by arguing that
incorrect inputs from the context of discovery will eventually be elimi-
nated by the testing process. Howson (1990, 224, 243) noted some of
these parallels with Popper.

The remaining input into equation (1) is P(e¢) and its status is also con-
troversial. Much of this controversy concemns the case in which we set
P(e) equal to one. Some argue that once we have carried out the relevant
experiments and observations and decided that e is true, we should set
P(e) equal to one. However, this has the disadvantage that setting P(e)
equal to one in equation (1) is equivalent to dropping the term altogether.
Moreover, as Glymour (1980, 86) noted when we evaluate a deterministic
hypothesis that successfully predicts e, P(elh) is also one and we get no
adjustment to the prior probability as a result of applying Bayes’s law.

One Bayesian response, advocated by Garber (1983) and others, is that
even if h entails ¢, we need not know that this is the case and thus we
need not set P(elh) equal to one. While such logical learning does occur,
however, many important scientific cases exist in which e has in fact been
deduced from % so that we do know that P(elh) = 1. A more common
Bayesian view is that we must assess P(e) on the basis of our background
beliefs, abstracting from any knowledge of whether ¢ is in fact true or
false. (See, e.g., Howson and Urbach 1989, 270-275; and Howson 1991—
which includes a reply to Garber. Eells 1990 provides replies both to
Garber and to Jeffrey’s 1983 version of this approach. See also Glymour
1980, 91-93, and Niiniluoto 1983. Earman 1992, chap. S, provides a
comprehensive discussion of these options.) I will raise some different
issues in this paper. For present purposes two points are important. First,
the evaluation of P(e) constitutes a second place at which a subjective
evaluation of a probability is required before we can apply the Bayesian

Copryright © 1994. All rights reserved.



REASON, JUDGEMENT AND BAYES’S LAW 355

algorithm. Bayesians have not applied the swamping approach to P(e); I
will return to P(e) in section 3. Second, even when ¢ is known to be true,
Bayesians deny that we should substitute one for P(e) in Bayes’s law;
this point will be especially important in section 4. (Another issue con-
cerns the fact that we get greater confirmation of £ for lower values of
P(e), ceteris paribus. See Howson and Urbach 1989, 86—88, for a Bayes-
ian response. I return to this topic at the end of sec. 3.)

With this background, I can now state the main thesis of this paper. I
will argue that while Bayes’s law may have an important role to play in
the rational evaluation of scientific hypotheses, use of this law can pro-
vide only a small part of such rational evaluation. We will see that ap-
plications of Bayes’s law to accumulating evidence are not ipso facto
rational. Indeed, situations arise in which serious questions must be ad-
dressed as to whether applying Bayes’s law is reasonable and these ques-
tions cannot be resolved by further applications of the law. I begin my
argument for this thesis with another look at the prior probabilities.

2. Hypotheses and Prior Probabilities. On the Bayesian view, hy-
pothesis testing amounts to a competition between a set of explicitly for-
mulated hypotheses. In one respect this is true for any confirmation the-
ory: We cannot evaluate an hypothesis that has not been formulated. (We
can include a catchall hypothesis to cover the possibility that all of the
hypotheses formulated thus far may be wrong. But inclusion of the catch-
all will not affect the issues to be discussed in the present section.) Never-
theless, on a Bayesian approach the set of hypotheses under explicit con-
sideration plays an espectally important role because the sum of the prior
probabilities assigned to these hypotheses must not exceed one. Thus we
cannot assign prior probabilities on a case-by-case basis. Rather, we must
make these assignments holistically, reflecting on the complete set of hy-
potheses under consideration and on our assessment of their relative prob-
abilities. In effect, when we assign prior probabilities we are distributing
a‘limited pool of available probability values. As a result, any decision
to entertain a new hypothesis will often require more than just assigning
another prior probability value; it may require some redistribution of prior
probabilities previously assigned (see Earman 1992, 195-198, for par-
ticularly striking examples). In other words, on the Bayesian view, the
decision to entertain a new hypothesis, or to revive a previously rejected
hypothesis, will require a more complex set of decisions in the context
of discovery than just deciding to entertain another hypothesis. Let us
explore some variations on this situation, beginning with the case in which
we decide to reconsider a previously rejected hypothesis.

Bayes’s law can be applied only to hypotheses that have some prior
probability greater than zero. This is clear from equation (1) where setting

Copryright © 1994. All rights reserved.



356 HAROLD [. BROWN

P(h) = 0 ends discussion of that hypothesis. Savage describes this as “an
example of the general principle that, if some event is regarded as vir-
tually impossible, then no evidence whatsoever can lend it credibility”
(1954, 47). Savage describes this as a “common-sense principle”, and
the point is reiterated a few years later in a joint paper, “roughly, once
something is regarded as impossible, no evidence can reinstate its cred-
ibility” (Edwards et al. 1963, 218).

Yet many important scientific situations arise in which observational
evidence should lead us to reconsider an hypothesis that we once viewed
as having no possibility of being correct. For example, at one time many
Aristotelians would have accorded a probability of zero to the suggestion
that a rock dropped from the top of the mast of a moving ship would
land at the foot of the mast. According to Aristotelian physics, a stone
landing at the foot of the mast would have been simultaneously engaged
in natural and violent motion. Since these two forms of motion are, by
definition, contraries, it is logically impossible that they occur in a mov-
ing object at the same time. Still, a person who initially held an Aristotelian
view and then observed the experiment would do well to reconsider be-
cause of the outcome. Moreover, once the point has been made, other
examples leap quickly to the mind. Before Galileo’s telescopic obser-
vations many astronomers would have accorded a probability of zero to
the hypotheses that there are mountains on the moon or spots on the sun.
Yet some of these astronomers changed their minds in response to the
telescopic observations. Similarly, a late nineteenth-century physicist might
well have rejected the claim that mass is a function of velocity, that space
and time are aspects of a more fundamental feature of the physical world,
or that some events are uncaused, but reconsidered this rejection on the
basis of observational evidence.

The above examples bring out one way in which the Bayesian view of
scientific rationality is too narrow. None of these decisions to reconsider
a previously rejected hypothesis are rational if the rational evaluation of
scientific hypotheses requires an application of Bayes’s law. Nor, on
Bayesian grounds, could there be any failure of rationality in the refusal
to accord any probability at all to the claim that, say, the sun and moon
are imperfect—no matter how much evidence accumulated—so long as
we began by assigning a prior probability of zero to these hypotheses.
Yet such reconsiderations provide paradigmatic examples of a rational
response to the evidence. Of course, nothing in the Bayesian view pre-
vents assignment of a nonzero prior probability to an hypothesis that we
previously considered to be absurd; but any such assignment is a decision
made in the context of discovery and all such decisions are supposed to
be beyond the pale of rational analysis. In contrast, the situations de-
scribed illustrate cases in which a rational response to the evidence re-
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quires that we suspend the mechanical application of Bayes’s algorithm
and return to the context of discovery. Note, however, that this return to
the context of discovery requires another decision that cannot be rational
on a Bayesian account.

The examples noted above provide an important perspective on the con-
vergence theorems. At most these theorems guarantee convergence to the
best supported of the hypotheses actually under consideration. The theo-
rems should not lead us to expect convergence on the correct hypothesis
unless we have somehow included that hypothesis in the set under eval-
uation.’ This is another point that holds for any confirmation theory, but
it is particularly poignant for Bayesians since they deny any rational basis
for expanding the set of hypotheses under consideration. Investigators
who begin with different sets of hypotheses (which may include some
overlaps) may well converge on different final hypotheses on the basis
of the same evidence. It seems reasonable to suggest that in such cases
each investigator should expand the set of hypotheses under evaluation
to include those that are winning the competition for a high posterior
probability in the hands of their competitors. Such a decision might even
lead to a more reasonable application of Bayes’s law than would an in-
sistence on continuing to gather evidence and evaluate the currently fa-
vored set of hypotheses. However, nothing in the mainstream Bayesian
view requires this expansion of the set of hypotheses under consider-
ation.” Indeed, if rational evaluation of scientific hypotheses consists solely
in accumulating evidence and applying Bayes’s law, it will be neither
rational to expand the set of hypotheses nor irrational to refuse to expand
this set.

Before considering further examples, let us note one possible Bayesian
response to the cases mentioned thus far: that we do not really accord a
zero probability to any hypothesis since there will always be some odds
at which we would bet on that hypothesis. This is a dubious response for
two reasons. First, there is simply no reason why we should not consider
some hypotheses impossible; after all, estimates of prior probabilities are

'See Suppes (1966, 29-30) for a related point. Suppes argues that the Bayesian view
provides no mechanism for introducing a new concept into our analysis of a body of data,
and he constructs an example that leaves a Bayesian unable to choose the correct hypothesis
from a set of three competing hypotheses despite how much evidence is accumulated.

*The claim that we ought to add any hypothesis that is seriously under consideration in
the scientific community to our own set of competing hypotheses forms the centerpiece of
Shimony’s (1970) “tempered personalism”. Shimony presents this claim as part of an ac-
count of the notion of “probability”, but it is more useful to view it as a methodological
proposal. Note that while this may well be a sensible proposal, any attempt to defend it
as rational will require resources beyond those provided by Bayes’s law and the data. Yet
whether we accept Shimony’s proposal can affect how we apply Bayes’s law, and thereby
affect the outcome of a Bayesian evaluation of specific scientific hypotheses. I return to
the issue of how we choose methodological rules in sec. 4.
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subjective estimates that require no justification. Second, we must not
forget that any prior probability accorded to hypotheses that are consid-
ered wild must be at the expense of some probability that could otherwise
be accorded to hypotheses considered more reasonable. We could, of
course, distinguish between reasonable and unreasonable prior probability
estimates (see Lipton 1992), but to do so is to admit that application of
Bayes’s law is, at most, only a part of the process of rational evaluation.

Let us consider another situation in which evidence will have no import
on a Bayesian account, but in which it seems eminently rational that we
redistribute prior probabilities. Suppose we are comparing two determin-
istic hypotheses, ki, and h,, to which we have assigned very different prior
probabilities, P(h,) and P(h,). Now suppose we deduce an evidence state-
ment e from one of these hypotheses, verify e, and then deduce e from
the competing hypothesis. It follows from Bayes’s law that the relative
degree of confirmation of the two hypotheses will equal the ratio of their
prior probabilities: P(elh) = 1 for each hypothesis and P(e) must be the
same for both. As a result,

P(h)|e)/P(hre) = P(hy)/P(h,),

and the ratio of the probabilities is unchanged by the evidence. Bayesians
maintain that this result is appropriate since nothing in this case will dis-
tinguish the two hypotheses. However, suppose we find an expanding set
of cases in which we succeed in deducing a result from one of our hy-
potheses, verify that result, and then deduce the same result from the
competing hypothesis. We may reasonably maintain that the ratio of the
two posterior probabilities should approach one; yet, this cannot happen
if our evaluation of the import of evidence is limited to applying the
Bayesian formula. Again, nothing in the Bayesian viewpoint prevents us
from suspending application of the formula and reconsidering our as-
signment of prior probabilities; but neither the decision to suspend rote
application of Bayes’s law nor the redistribution of priors will count as
a rational response to the evidence on the Bayesian view.

Consider one more example which requires another form of Bayes's
law that is equivalent to (1), but that makes the role of competing hy-
potheses explicit:

P(hje) = P(h)P(elh) /2P (h)P(el|h), 2)

where the summation is taken over all of the hypotheses under consid-
eration. Earman, with an uncharacteristic lapse of caution, says that when
Bayes’s law is written in this form it “shows how the probability of a
hypothesis is boosted by evidence that eliminates rival hypotheses™ (1992,
79; but see p. 164 where Earman expresses a different view). The idea
is that if one of the hypotheses is eliminated, the denominator is reduced
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and the probability of each of the remaining hypotheses is raised. How-
ever, this is not the only possible outcome. We could, for example, choose
to enter the context of discovery and redistribute priors. Indeed, here is
one case in which this option appears mandatory: If, after eliminating the
failed hypothesis, we are left with a set of hypotheses such that each
entails e, and we have included a catchall hypothesis in the denominator,
then the denominator must be one (see the discussion in sec. 3). In this
case we had better redistribute the excess prior probability that has just
become available. However, this takes us back into the context of dis-
covery where there is no guarantee that any given prior will be raised;
as a matter of principle, we are starting over. Some prior probabilities
may be raised, others lowered, some dropped to zero, and new hy-
potheses may be introduced.

The examples discussed in this section support the main thesis stated
in the final paragraph of section 1: They illustrate cases in which a ra-
tional response to the evidence requires that we do something other than
continue the application of Bayes’s law. In other words, even in cases in
which Bayes’s law could be applied, applications of this law are not au-
tomatically rational. Indeed, the examples we have been considering jus-
tify a stronger thesis. It is not just that applications of Bayes’s law cannot
be the whole of scientific rationality; applications of this law cannot even
be the most fundamental part of an account of reason because, as the
examples show, being rational requires that we use Bayes’s law in a ju-
dicious manner. A rational agent will not mechanically apply the law to
a predetermined set of hypotheses. Sometimes a rational agent will decide
to suspend application of Bayes’s law and return to the context of dis-
covery in order to reconsider the set of hypotheses to be evaluated and
to redistribute prior probabilities.

We can get further insight into this need to use Bayes’s law in a ju-
dicious manner when applying it to confirmation theory by comparing a
different application of the law. A common statistical application of Bayes’s
law occurs when we have a set of populations of known composition,
which can be conveniently modeled by urmns. We have a sample taken
from one of these urns and we wish to calculate the probability that the
sample came from each urn. Each of our hypotheses states that the sample
came from a specific urn and we can often be confident that we know
which hypotheses are relevant exactly because we are considering a def-
inite set of populations. However, when we use Bayes’s law in.a con-
firmation theory, we have only one urn-—nature, or some aspect of na-
ture—and we are comparing hypotheses about the composition of that
urn. In this case it is much more difficult to be reasonably sure that we
have formulated a complete set of hypotheses. Contemporary studies of
scientific revolutions have provided us with myriad examples of situations
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in which surprising new hypotheses came to be entertained, including
cases in which new hypotheses were introduced in response to new evi-
dence. Yet, on a Bayesian view, all decisions to include a new hypothesis
in the set under evaluation amount to nonrational decisions to alter our
nonrational assignments of prior probabilities and then to begin the pro-
cess of empirical testing anew. This yields an extremely troubling view
of the development of science. If our choice of hypotheses and distri-
bution of prior probabilities is itself nonrational, then we have no reason
to consider the set of hypotheses that we have been examining to be ap-
propriate and no reasor not to alter our hypotheses and prior probabilities
at will. Indeed, if decisions to return to the context of discovery and carry
out such alterations are also nonrational, then such decisions can presum-
ably take place at any time-—again, no reasons are required. Thus, as
Salmon (1988, 9-10; 1990, 200) has noted, even if we have encountered
convergence to one of the hypotheses in the set under consideration, we
can choose to override this result by returning to the context of discovery
and changing the mix of hypotheses and prior probabilities. On Bayesian
grounds this will not be a rational decision, but it will be no less rational
than the original decision to evaluate a particular set of hypotheses rather
than some competing set. That is, the view that rational evaluation of
hypotheses is completely captured in applications of Bayes’s law actually
leaves us with no reason why we should accept the outcome of these
applications.

I do not offer the above conclusion as an instance of the ultimate non-
rationality of science, but rather as an illustration of the limits of the
Bayesian account of reason. To the extent that Bayesians limit scientific
rationality to the application of Bayes’s law, their account of the ration-
ality of science is seriously incomplete in at least two respects: It fails to
account for cases in which evidence suggests that we reconsider our choice
of hypotheses and prior probabilities, and it fails to provide a reason why
we should not reconsider our set of hypotheses and prior probabilities
whenever we feel like doing so.

3. The Probability of the Evidence. When Bayes’s law is expressed as
in equation (1), P(e) appears to be of considerable importance since the
posterior probability of an hypothesis will depend on the value of this
term. The discussion of section 1 suggests that P(e) provides a second
point at which a subjective estimate of a probability is required in order
to apply Bayes’s law. It also seems that there are two points at which
evidence is brought to bear on our hypotheses: the estimate of P(e) and
the evaluation of P(elk). Yet this view is strikingly at variance with that
of Bayesian statisticians who adhere to “the likelihood principle”:
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[In] calculating p(8]x), our inference about @, the only contribution
of the data is through the likelihood function, p(x|#) [where @ is play-
ing the role of our A and x the role our e]. In particular, if we have
two pieces of data x, and x, with the same likelihood function, p(x,|6)
= p(x2|«9), the inferences about 8 from the two data sets should be
the same. (Lindley 1976, 361)

Berger (1985, 28) states the point thus, “In making inferences or deci-
sions about 0 after x is observed, all relevant experimental information
is contained in the likelihood function for the observed x”. We should,
then, more closely examine the role of P(e) in Bayesian confirmation
theory.

The first point to note is that whenever we have an exhaustive set of
mutually exclusive hypotheses then, by a theorem of the probability cal-
culus,

P(e) = ZP(h)P(e|h). 3)

Thus if we believe that we have formulated all of the relevant hypotheses,
assigned their prior probabilities, and calculated the probability of the
evidence conditional on each hypothesis, P(e) is already determined. No
additional estimate is to be made and we have no second point at which
evidence is brought to bear on our hypothesis. In this case the supposedly
nonrational decision as to which hypotheses are to be considered, along
with the equally nonrational assignments of prior probabilities to these
hypotheses, determines the value of P(e).

Suppose, however, that we allow for the possibility that all of our ex-
plicitly formulated hypotheses may be wrong and reserve some prior
probability for this option. In this case P(e) appears to play an indepen-
dent role. Let us rewrite (3) in a way that makes this option explicit.
Using —h to symbolize the case in which all of our explicit hypotheses
are wrong and letting j range over the explicitly stated hypotheses, (3)
becomes

P(e) = SP(h)P(elh) + P(—h) P(e|—h). 4)
Here some estimate for P(e) would seem to be in order. But
P(—h) =1 — ZP(h). (%)

Thus in equation (4) P(e) and P(e|—h) are the only undetermined param-
eters. As a result, assigning a value to P(e) is equivalent to assigning a
value to P(e|—h). This is odd since —# is not a specific hypothesis from
which a value for e could be calculated; rather, —#4 is an enormous dis-
junction of all possible hypotheses that are not included in our explicit
set. Salmon, referring to —h as “the catchall”, has emphasized the ex-
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treme difficulty of assigning a definite value to P(e|—4), “What is the
likelihood of any given piece of evidence with respect to the catchall?
This question strikes me as utterly intractable; to answer it we would have
to predict the future course of the history of science” (1991, 329). Earman
describes the likelihood of the catchall as “literally anybody’s guess” (1992,
168). However, it is apparently no more difficult to estimate this likeli-
hood than it is to assign a value to P(e). Salmon (1990, 188) has noted
that P(e) is related to the other probabilities under consideration but has
not explored the consequences of this relation. Let us explore this situ-
ation further, first for deterministic hypotheses and then for statistical
hypotheses.

In the case of deterministic hypotheses we have a thoroughly bewil-
dering situation. Suppose our explicit set of hypotheses consists of Newton’s
and Einstein’s theories of gravity and that ¢ is an evidence statement that
is entailed by both. Then —# consists of the disjunction of all hypotheses
other than these two. It would be surprising if a particular e could be
deduced from this disjunction since this would entail that ¢ can be de-
duced from each of the disjuncts. Moreover, if every admissible hypoth-
esis entails e then each of the P(elh,«) terms in (3) will equal one and P(e)
must equal one. In this case the posterior probabilities equal the prior
probabilities so that e is empirically useless on a Bayesian view. An anal-
ogous point holds if every hypothesis materially implies e.

One might want to limit the set to all “relevant” hypotheses but we
should consider at what point hypotheses using a four-dimensional non-
Euclidean spacetime became “relevant”. Even the elimination of hy-
potheses that entail —e can be problematic. Salmon (1991, 328--331) notes
the problem for early Copernicans generated by the failure to observe
stellar parallax but does not conclude that the theory should have been
rejected. Rather, he invokes the possibility of finding auxiliary hy-
potheses that, in conjunction with the Copernican view, entail no ob-
served parallax. The likelihood of the augmented theory will be one; the
effect of introducing the auxiliaries will be to require additional prior
probabilities in Bayes’s law, that is, the prior probabilities of the auxil-
iaries. I, however, leave this option aside and assume that hypotheses
which entail —e have indeed been rejected.

Suppose, then, that some of the hypotheses included in the catchall do
not entail ¢ and that we have eliminated those hypotheses that entail ~e.
Given that we are currently considering only deterministic hypotheses,
none of these hypotheses can entail a fractional value of the likelihood.
This leaves us with two further subcases. In one case, some of the hy-
potheses in our disjunction have no determinate likelihood; but then how
to interpret a determinate value for P(eI——h) remains unclear. Alterna-
tively, we can allow that some of the likelihoods are fractional even though
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the fraction is not entailed by the hypothesis. If this is the case, however,
then the values of these likelihoods will not be objectively determined
given ¢ and the relevant A; they will indeed become another set of prob-
ability values that must be estimated subjectively. Of course we cannot
actually estimate these likelihoods since many of the disjuncts in —#4 will
never have been explicitly formulated. Still, significant constraints will
have been placed on these likelihoods once we have estimated P(e). I do
not know how to interpret this situation and, for the remainder of this
section, I will confine discussion to statistical hypotheses.

In the statistical case the value of P(e) is not uniquely determined by
our choice of hypotheses and prior probabilities, but P(e) is still tightly
constrained by these choices. Given that P(e[—h) must be somewhere in
the range from zero to one, and setting S = ZP(h,)P(elh,), it follows from
(4) that

S=Ple)=S+ P(—h). (6)

Thus the possible values of P(e) are jointly determined by the presumably
objective likelihoods and subjective prior probabilities. Indeed, P(—h),
which gives the allowable range for P(e), is completely determined by
the prior probabilities in accordance with equation (5). Moreover, P(—h)
will presumably be small. To assign a large value to P(—A) is to judge
that we are not confident that our explicit set of hypotheses includes the
correct hypothesis. While this judgement may be altered by applying
Bayes’s law to the evidence, we should not, under the circumstances,
limit our research to gathering evidence and applying Bayes’s algorithm;
we should also be seeking more plausible hypotheses. That is, our de-
cision to exit the context of discovery was premature.

Salmon (1990, 191-192; 1991, 329) has offered a way of avoiding the
problems generated by the catchall and the P(e) term. He notes that if
we write equation (1) or (2) for two hypotheses, k; and h,, and take the
ratios of their posterior probabilities, P(e) drops out; as a result, —A drops
out as well. Note, however, that this proposal gives up the possibility of
calculating the posterior probability of specific hypotheses and will thus
be unacceptable to many Bayesians (see, e.g., Earman 1992, 171-173).
For those Bayesians who do wish to calculate posterior probabilities of
specific hypotheses, the discussion in the present section underlines again
the extreme importance of the choice of hypotheses to be compared and
of their prior probabilities. To see why, note that if we are dealing with
hypotheses of any genuine scientific interest, we can expect that research-
ers will devise empirical tests of these hypotheses that had not been thought
of when the hypotheses were formulated and their prior probabilities as-
signed. Now Bayesians maintain that some predicted observational results
may be considered more unlikely than others, that a low estimate of P(e)
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indicates that we consider the outcome described by e to be unlikely, and
that the observation of a predicted result that we consider unlikely should
provide more support for an hypothesis than an observation that is less
surprising. Equation (1) shows that this happens when we use Bayes’s
law (ibid., 195-198; see also Niiniluoto 1983, 377). Yet we have just
seen that in the case of statistical hypotheses, the possible values that we
can assign to P(e) are determined by e in conjunction with the set of
hypotheses under consideration and the prior probabilities we have as-
signed to these hypotheses. Moreover, the permissible range of variation
in P(e) is equal to P(—h), and is thus determined by our choice of prior
probabilities, irrespective of any specific e that may, someday, come to
be considered. Indeed, if we think that we already have an exhaustive
set of hypotheses, then no empirical result can be any more surprising
than any other. This result may make sense to anyone who accepts logical
omniscience with a vengeance, that is, who assumes that having for-
mulated an hypothesis we automatically know all conclusions that follow
in conjunction with our background knowledge. Thus the only surprising
outcomes will be those that cannot be deduced from our explicit set of
hypotheses. But a methodology that assumes this degree of logical om-
niscience will tell us nothing about how we ought to evaluate hypotheses
in real science.

If the result of this discussion seems odd, then Bayesians might want
to reconsider the claim that P(e) is a measure of the degree to which e
is to be expected. However, what role P(e) plays in Bayesian confir-
mation theory is now unclear. Perhaps all Bayesians should accept Salmon’s
conclusion that the most we should expect from Bayes’s law is a ranking
of relative probabilities of hypotheses.

4, Tteration. Let us consider one more way in which a reasonable Bayesian
evaluation of an hypothesis depends on judgements not captured in Bayes’s
law. This section is aimed at those Bayesians who still want to assign
values to P(e) and who also maintain that even when e is known to be
true, we should not substitute one for P(e) in Bayes’s law. Now, suppose
we have acquired a body of evidence e and used it to adjust the proba-
bilities of a set of hypotheses. In effect, we now have a new set of prior
probabilities to be used in further applications of Bayes’s law. Is it le-
gitimate to use the same evidence a second time in order to further adjust
our posterior probabilities? I am not concerned here with another instance
of the same observational result, but with a reuse of a single observation.

Two arguments suggest that such reuse is legitimate. First, there is no
Jformal difference between using the evidence a second time with the newly
calculated posterior probabilities serving as the prior probabilities, and
using that evidence for the first time with those prior probabilities. In-
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deed, some other Bayesian may have used the evidence in question with
just those priors at which we have now arrived. Presumably, on a Bayesian
approach, the formalism-—not who is using it—determines the rationality
of the outcome.

Second, consider the special case in which we are dealing with an ex-
haustive set of mutually exclusive statistical hypotheses. Once we adjust
the probabilities of the hypotheses then, in general, we will also change
the value of the denominator in Bayes’s law. Given that we now have
better estimates for the probabilities of the hypotheses, we also have an
improved value for P(e) in accordance with equation (3). This suggests
that we should recalculate the posterior probabilities of our hypotheses
using these improved inputs. The result will be a series of iterations that
will hopefully yield rapid convergence to a final set of P(ke) values for
a given e.

Instead of speculating further on such possibilities, let us determine the
actual results of iteration in the special case under consideration. Assume
that we have an exhaustive, mutually exclusive set of statistical hy-
potheses, {#;}, and that there are ¥ members in the set. Let Py(h,) be the
initial estimate of the probability of ;. The value of P(elh;) is a constant
for a given e and k; set P(elh;) = A;. The following expression gives the
value of P,(h)—that is, the value of P(hje) after n iterations (the proof
is in the appendix):

P,(h) = Po(h)A7/[Po(h)AT + Po(h)AS + . . . + Po(h)AL] 7

Now let &, denote the hypothesis with the largest A value.® Divide the
numerator and denominator of (7) by Aj, giving

P (hy) = Po(h,) /{Po(hy) + Py(hy) [A /A"
+ ...+ Pothy) [AJA) (3)

Each term of the form [A,/A,] is less than one. Thus each [A;/A,]" will
go to zero as n increases without limit, and P,(h,) will approach one. In
other words, on iteration the hypothesis with the highest likelihood will
approach a posterior probability of one. By the same token, every other
hypothesis in the set will approach a posterior probability of zero.

One consequence of this result is that it can yield an explicit contra-
diction. Suppose that two groups of researchers who are evaluating the
same set of hypotheses find two items of evidence e¢ and ¢* such that e
is more probable given A, than given h,, but ¢* is more probable on A,

*If this value is shared by two or more hypotheses, the test under consideration will not
distinguish among them. For present purposes they may be considered a single hypothesis
and their prior probabilities can be added. This is in accord with the likelihood principle.
The argument that follows can then be applied to some other item of evidence with respect
to which these hypotheses yield different likelihoods.
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than on A;. In this case one group will arrive at a probability of one for
h, and zero for h,; the other group will arrive at a probability of one for
h, and zero for k. Moreover, nothing need change if each group now
becomes aware of the other group’s evidence since, as we saw in section
2, further applications of Bayes’s law cannot resuscitate an hypothesis
that has a prior probability of zero.

Note also that this contradiction occurs only because we are dealing,
in effect, with a one-urn case. If we have several urns of known com-
position plus a sample taken from one of those urns, and our problem is
to decide the probability that the sample came from each urn, there will
be no contradiction since each new sample provides a new problem and,
in effect, a new set of hypotheses.

What are we to make of this result? Having recognized the degree to
which one hypothesis can swamp the others on the basis of a single piece
of evidence, as well as the potential for inconsistency, we could propose
a variety of methodological rules to remedy the situation. For example,
we can forbid the reuse of data, or we can insist that all available evidence
be taken into account in any application of Bayes’s law. However, to
propose such rules is to acknowledge that more is involved in the rational
evaluation of an hypothesis against the evidence than simply applying
Bayes’s law. We are led, once again, to the conclusion that rational eval-
uation of hypotheses against the evidence requires that Bayes’s law be
used in a judicious manner. Moreover, methodological proposals must
themselves be evaluated and the means by which we carry out such eval-
uations will have to be included in a full account of scientific rationality.
After all, if our methodological rules lack a rational basis, then we have
no grounds for holding that we arrive at rational results through the ap-
plication of those rules.

5. From Subjectivity to Judgement. If we adhere to the traditional dis-
tinction between context of discovery and context of justification, which
allows only logical relations in the latter context, then the outcome of a
Bayesian evaluation carried out in the context of justification is deeply
dependent on decisions made in the context of discovery. Outcomes of
Bayesian evaluations depend on the entire set of hypotheses that are con-
sidered relevant, the distribution of prior probabilities among these hy-
potheses, and perhaps on estimates of the probability that a predicted
outcome will occur. This result is a direct consequence of the Bayesian
attempt to limit the context of justification to deductive arguments while
relegating the choice of premises, prior probabilities, and the probability
of the evidence to the context of discovery.

Salmon has long advocated a different way of thinking about the eval-
uation of the probabilities that are to be inserted into Bayes’s algorithm.
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We have already noted that Salmon proposes to eliminate the P(e) term
by limiting the use of Bayes’s law to calculations of relative probabilities
between hypotheses. However, prior probabilities cannot be eliminated
from a Bayesian approach; Salmon (1990, 189—-191) also argues that, in
at least some cases, the likelihoods cannot be calculated in a straightfor-
ward manner. In all of these cases we must make estimates, and Salmon
argues that these estimates need not be subjective. Rather, these estimates
amount to evaluations of the plausibility of the hypotheses being tested,
estimates that are to be based on nonformal considerations such as anal-
ogies and consistency with accepted resuits (in the loose sense in which
“consistency” is used outside of formal logic). These estimates require
judgement and Salmon (1966, 1990, 1991) maintains that these judge-
ments are more than mere subjective opinions. Indeed, Salmon points out
that these judgements, not Bayes’s algorithm, constitute the crux of our
rational evaluations of scientific hypotheses. Referring to various forms
in which Bayes’s law may be expressed, Salmon writes, “The algorithms
are trivial, what is important is the scientific judgment involved in as-
sessing the probabilities that are fed into the equations™ (1990, 201). An
adequate account of rational evaluation must include a central role for
nonformal judgements.

The examples discussed support Salmon’s view, but they also suggest
a wider scope for judgement than Salmon has considered. Salmon seeks
to limit the role for judgement to the assessment of prior probabilities and
likelihoods, but we have seen that Bayesian confirmation theory requires
a much greater role for judgement. We must exercise judgement in de-
ciding which hypotheses to compare. We must also exercise judgement
in deciding when to apply Bayes’s law to accumulating evidence and
when we should suspend the mechanical application of the algorithm in
order to seek new hypotheses or redistribute prior probabilities. We have
even seen that the proper use of Bayes’s law may require the development
and evaluation of methodological rules that will govern the reuse of evi-
dence. In general, Bayes’s law can provide a useful tool in evaluating
scientific hypotheses provided the use of the law is guided by an appro-
priate set of judgements.

6. Conclusion. While the main aim of this paper has been to criticize a
particular version of Bayesian confirmation theory, the general point about
the role of judgement in the proper use of formal methods extends well
beyond this case. Indeed, the idea that nonformal judgement is an es-
sential element in the process of rational evaluation has provided a per-
sistent undertone in the literature for some time. Examples include Brown
(1978, 1988), Elster (1983), Lugg (1985), Newton-Smith (1981), Putnam
(1981), Salmon (1966), Suppes (1984), and Wartofsky (1980). The major
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point urged, with varying degrees of vigor, is that while the use of ap-
propriate algorithms is an important part of the process of arriving at
rational evaluations, it is only a part. Judgement is required in order to
choose appropriate algorithms and to govern their intelligent application.
An account of reason that omits the central role of judgement in deter-
mining the inputs to our algorithms and in determining whether and which
algorithms to use will be radically incomplete. At the same time, devel-
opment of an adequate account of judgement is a seriously neglected task
for the theory of reason. I have attempted to develop such an account in
Brown (1988). That account will be improved and the relation between
judgement and the use of formalisms in human reason will be explored
to much greater depth in Brown and Hooker (1994).

APPENDIX

Proof of the iteration formula (7) by strong induction on the number of iterations:
a.) Base case: n = 1 recaptures Bayes’s law:

P\(h) = Po(h)A/IPo(h)A, + Po(h)A; + .+ Po(hoAL].

b.) Inductive case: Assume (7) is correct up to z iterations and consider one more iteration.
Let

§ = Po(h)AT + Py(h)As + . . . + Po(h)AL,

so that after the uth iteration for hypothesis 4; we have

P(h) = Po(h)A}/S. (AD)
By Bayes’s law, we have
Poa(h) = P.(hJA/JIPRDA + Po(h)As + . .+ P(h)AL]. (A2)

Substitute for P,(h;) in (A2) using the appropriate form of (A1) for each #,. This gives
P (h) = [Po(hdAT(A) /S1/1Po(h)) AT(A)/S

+ Po(h:)AYNA)/S + ..+ Po(h)AKAD/S].
Clearly, § will cancel out, and a bit of algebra yields (7).
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